Mod 12
Triangles and Parallelograms part 2

Use these examples to help you complete the Khan Academy lessons that are due by April 19th.
You also have Khan due tonight (April $14^{\text {th }}$) based on the notes from last class.
Find missing length when given area of a parallelogram
The parallelogram shown below has an area of 135 units 2.
They have given you the area and the height.
They also gave you the side length (17) but you don't
need that for area.
$135=$ base times 15
135 divided by $15=$ base

The parallelogram shown below has an area of 21 units 2 | Area $=$ base times height |
| :--- |
| They have given you the area and the base. |
| They also gave you the side length (5) but you don't |
| need that for area. |
| $21=7$ times height |
| 21 divided by $7=$ height |
| $3=$ height |

The parallelogram shown below has an area of 15 units 2.	Area $=$ base times height They have given you the area and the base. $15=3$ times height 15 divided by $3=$ height
$5=1$	

The parallelogram shown below has an area of 20 units 2.

Find the missing base.

Area = base times height
They have given you the area and the height.
$20=$ base times 4
20 divided by 4 = base
5 = base
\qquad
Triangles and Parallelograms part 2
FIND MISSING LENGTH WHEN GIVEN AN AREA OF A TRANGLE
$\div \frac{1}{2} \times \frac{2}{1}$

The triangle shown below has an area of 75 units 2.
Find the missing side.

$$
\begin{aligned}
& 7 S=\frac{1}{2}(15)(10) \\
& 7 S=\frac{1}{2}(150)
\end{aligned}
$$

The triangle shown below has an area of 40 units 2.
Find the missing side.

Find x.

The triangle shown below has an area of 12 units 2.
Find x.

Area of a triangle $=$ One half times the base times the height.

$$
A=\frac{1}{2} b
$$

Substitute 75 for A, 10 for h, and solve for b.

$$
75=\frac{1}{2} b(10)
$$

Divide the given area by the given height.

$$
\begin{aligned}
& \frac{75}{10}=\frac{1}{2} b \text { then, multiply both sides by } 2 \text { to get rid of the fraction. } \rightarrow \frac{2}{1} \cdot \frac{75}{10}=b \\
& \frac{\mathbf{1 5 0}}{10}=b \text { then reduce the fraction so } b=\mathbf{1 5} \\
& \text { (On this problem they also gave you the diagonal length (11), but you don't need it for area. }
\end{aligned}
$$

$$
レ
$$

$$
\begin{aligned}
& \text { Area of a triangle }=0 \text { ne half times the base times the height. } \\
& \begin{array}{l}
A=\frac{1}{2} b h \\
\text { Substitute } 40 \text { for } A, 8 \text { for } h \text {, and solve for } b \text {. } \\
\mathbf{4 0}=\frac{\mathbf{1}}{\mathbf{2}} b(8) \\
\text { Divide the given area by the given height. } \\
\frac{40}{8}=\frac{\mathbf{1}}{\mathbf{2}} \boldsymbol{b} \quad 40 \text { over } 8 \text { equals } 5 \rightarrow \mathbf{5}=\frac{\mathbf{1}}{\mathbf{2}} \boldsymbol{b} \\
\text { then, multiply both sides by } 2 \text { to get rid of the fraction. } \rightarrow 2 \cdot 5=b \text { so } b=10 \\
\text { (On this problem they also gave you the diagonal length }(9) \text {, but you don't need it for area. }
\end{array}
\end{aligned}
$$

Area of a triangle $=$ One half times the base times the height.
$A=\frac{1}{2} b h$
Substitute $\quad 16$ for A, \square for b, and solve for h.

$$
16=\frac{1}{2}(4) \cdot h<
$$

Divide the given area by the given base, then multiply by 2 .

$$
\frac{16}{4}=4 \times 2=8 \text { height }
$$

Area of a triangle $=0$ ne half times the base times the height.
$A=\frac{1}{2} b h$
Substitute

$$
12 \tan 6
$$ for b, and solve for h.

$$
12=\frac{1}{2}(6) \cdot h
$$

Divide the given area by the given base, then multiply by 2 .

$$
\frac{12}{6}=2 \times 2=4=\text { height }
$$

(On this problem they also gave you the diagonal length (1) , but you don't need it for area.
\qquad
\qquad Date: \qquad
AREA OF COMPOSITE FIGURES GEOMETRY VOCABULARY

- Composite Figures: Figure is made up of triangles. squares, rectangles, and other 2 -dimensional figures.
GUIDED NOTES:

1. A composite figure is not a standard \qquad basic shape.
2. To find the area of a composite figure, \qquad divide it into figures with areas you know how to find.
3. Then, find the sum of the areas of those figures.
4. Separate the composite figures below into basic shapes that you can find the area of. Label each shape and write the formula that you would use to find the area.

GUIDED PRACTICE:

\qquad
Triangles and Parallelograms part 2
PRACTICE PROBLEMS:

